Лекция 3 Органы движения /опорнодвигательный аппарат/

- 1. Характеристика скелета
- 2. Строение кости как органа
- 3. Классификация костей
- 4. Химический состав и физические свойства костей
- 5. Развитие и рост костей, факторы, влияющие на них

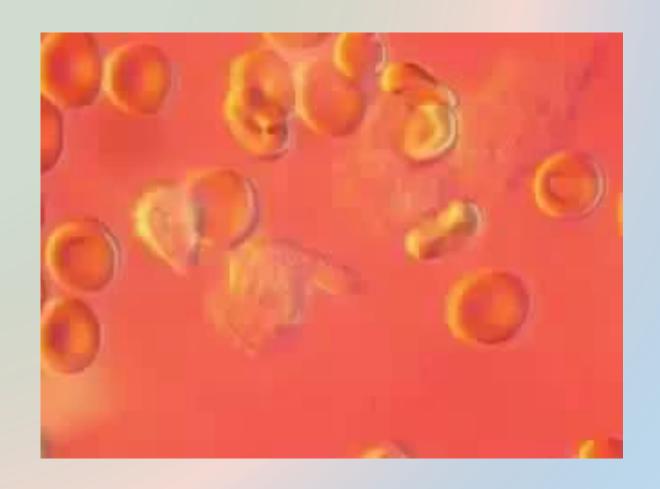
Органы движения

- Основа реактивности
- Отличают животных от растений

функции:

- 1. передвижение в пространстве
- 2. захват и измельчение корма
- 3. защита и нападение
- 4. участие в дыхании, кроветворении, жевании, мочеиспускании, дефекации, родах

3 основных вида движения:


1. амебовидное

- одноклеточные организмы (амеба) и некоторые клетки в многоклеточных организмах (лейкоциты)
 - за счет ложноножек (выпячивание цитоплазмы или выросты клеточной оболочки)

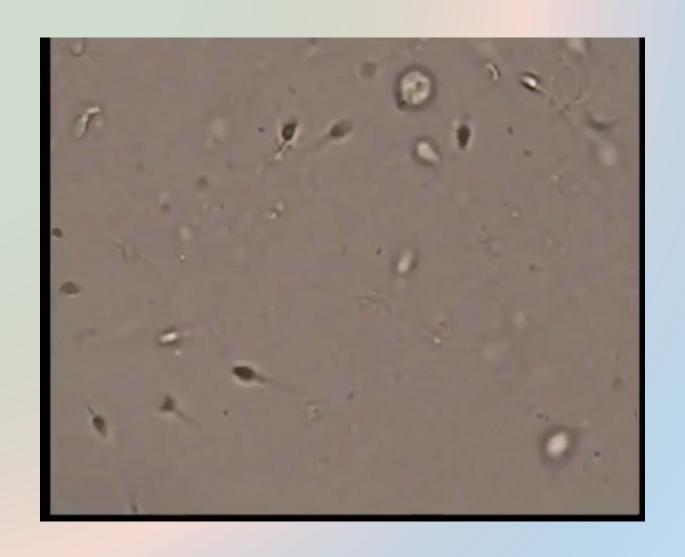
движение амебы

движение лейкоцитов

3 основных вида движения:

2. ресничное /жгутиковое, мерцательное/

- на поверхности одноклеточных (инфузория) или многоклеточных организмов есть реснички.
- ✓ у животных мерцательный эпителий в носоглотке, трахее; у спермиев -хвостик


движение инфузории

движение ресничек эпителия бронхов

движение спермиев под микроскопом

3 основных вида движения:

3. мышечное

аппарат движения включает 2 системы:

1. мышечная /активная/-двигательная роль

мышцы и их вспомогательные органы (бурсы, сесамовидные кости и т.п)

2. скелетная /пассивная / - опорная роль

кости, хрящи, связки

✓ Органы движения составляют до 72% от массы животного

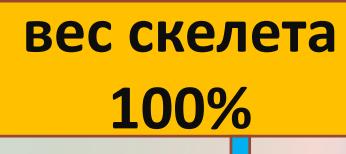
Вопрос 1

Характеристика скелета

Остеология (оѕ - кость) — наука о костях

- кости соединены в определенном порядке, образуя скелет (skeleton – высушенный)
- эндоскелет внутренний (лошадь, человек)
- экзоскелет наружный (черепаха, краб)

экзоскелет черепахи



экзоскелет человека

количество костей и масса скелета

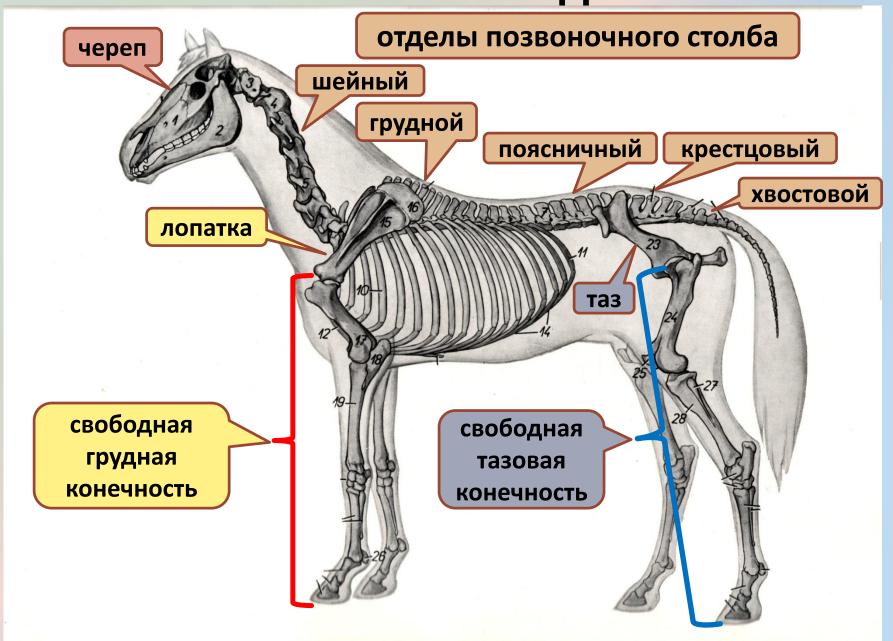
вид	кол-во костей	масса скелета взрослых, %	масса скелета новорожд, %
лошадь	207-214	13-15	30
крс	207-209	9-13	25
свинья	281-288	5-9	18
собака	271-282	10	16
человек	218-220	14-20	

скелет конечностей 51%

> скелет туловища 33%

> > скелет головы 16%

скелет подразделяется:


1. осевой:

- 1) череп: лицевой и мозговой отделы
- **2)** позвоночный столб: шейный, грудной, поясничный, крестцовый, хвостовой отделы

2. периферический:

- 1) скелет поясов: плечевой (лопатка) и тазовый (кости таза)
- 2) скелет свободных конечностей: грудные и тазовые

Скелет лошади

функции скелета

Механическая:

- **1. опорная** (поддержание тела, опора для мягких тканей и внутренних органов)
- 2. рычаги для работы скелетной мускулатуры
- **3. Защитная** (важные органы под защитой костей мозг, сердце)

Биологическая:

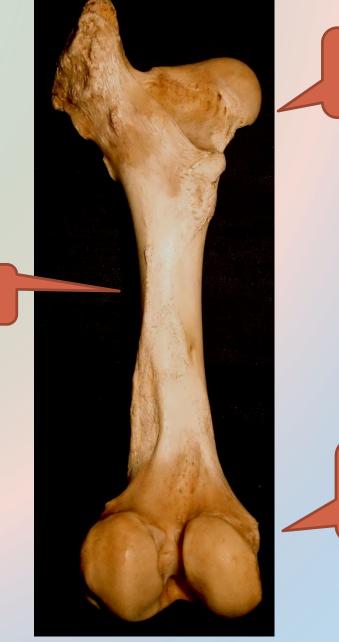
- 1. регуляция кроветворения (в костях содержится костный мозг)
- 2. депо минеральных веществ

Координатная сетка для врачей

✓ скелетотопия —расположение органов по отношению к частям скелета

Вопрос 2

Строение кости как органа

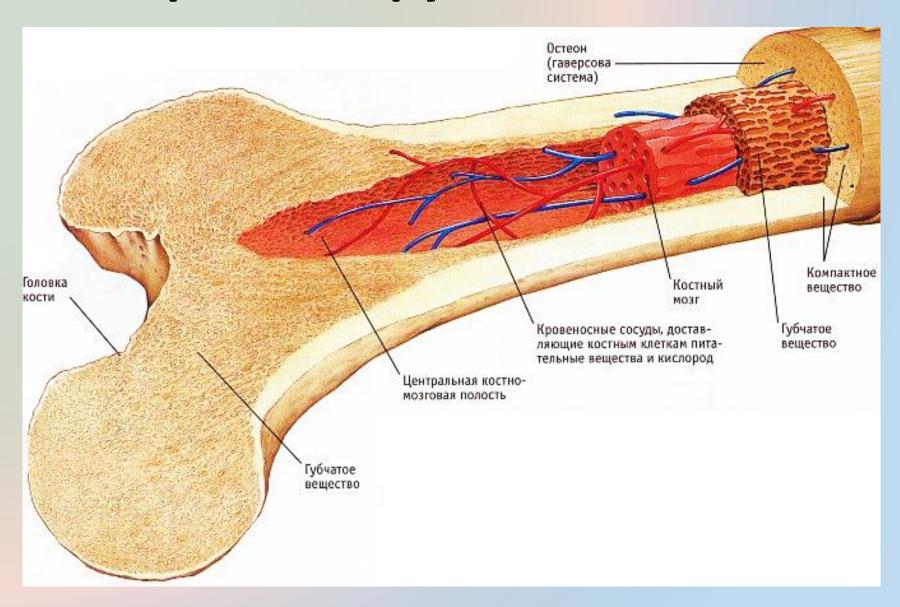

(на примере трубчатой кости)

Анатомические части трубчатой кости:

- 1. <u>диафиз</u> (dia между, phyo расту) тело кости, содержит полость для костного мозга
- **2.** <u>эпифизы</u> утолщенные концы кости (верхний и нижний)
- выпуклости /апофезы/ (лат. apophysis вырост) бугры, бугорки, гребни, отростки (для крепления мышц, связок)
- **углубления** желоба (проходят сосуды и нервы), ямки, впадины (для крепления связок, мышц)
- **щели, вырезки** (для прохождения сосудов, нервов через кость)
- отверстия (для входа сосудов, нервов в кость)
- шероховатости (для крепления мышц)

трубчатая кость

диафиз

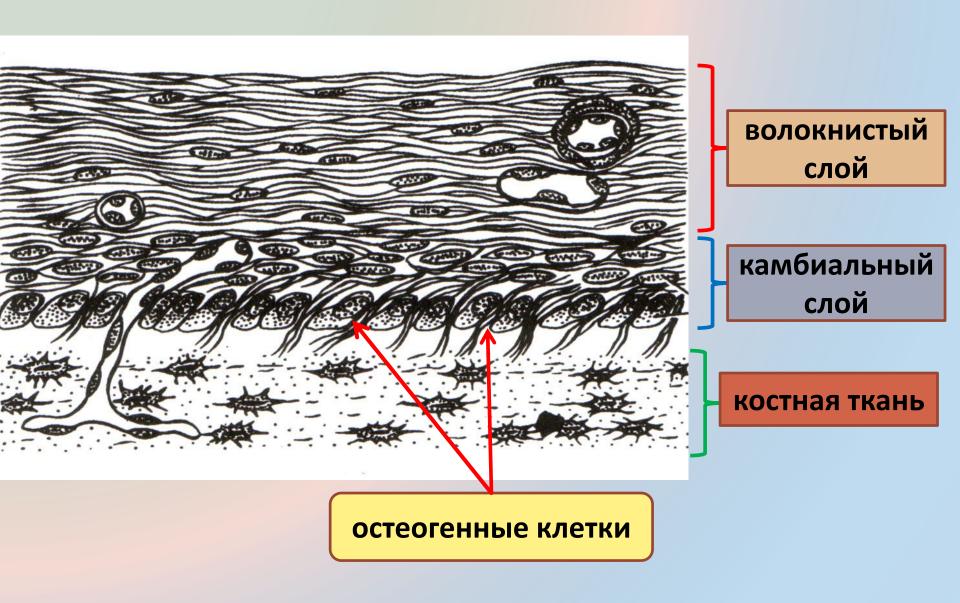

верхний эпифиз

> нижний эпифиз

Кость как орган состоит:

- 1. надкостница
- 2. основное вещество кости:
 - 1)компактное костное вещество
 - 2)губчатое костное вещество
- 3. костный мозг
- 4. суставной хрящ
- 5. сосуды и нервы

строение трубчатой кости

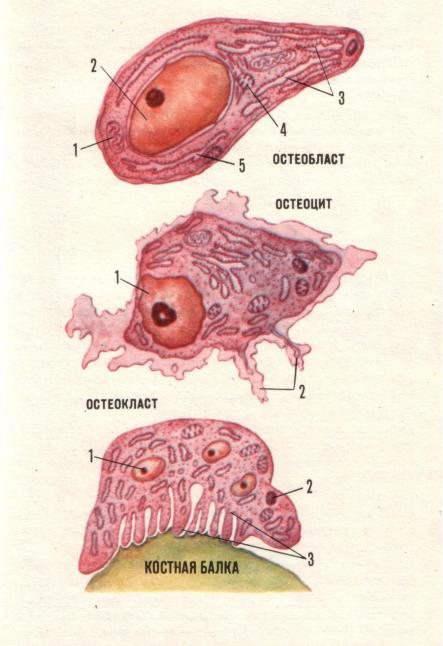


надкостница (periosteum)

состоит из двух слоев:

- 1. наружный /волокнистый/ stratum fibrosum из плотной соединительной ткани, много сосудов (розовый цвет кости) и нервов (высокая чувствительность кости), толстый в местах крепления мышц и связок
- 2. внутренний /камбиальный / stratum cambiale из рыхлой соединительной ткани, сосудов мало, много костеобразующих (остеогенных) клеток.
- ✓ у молодых животных костеобразующие клетки лежат по всей поверхности камбиального слоя, а у старых островками (нет роста кости)

схема строения надкостницы



надкостница (периост)

- ✓ покрывает снаружи всю кость, кроме зон суставного хряща
- ✓ прочно сращена с костным веществом прободающими волокнами
- ✓ возможно отслоение периоста при переломах, гнойных периоститах, а также при операциях на костях с последующим закрытием дефекта для быстрой регенерации кости

функции надкостницы:

- 1. опорно-механическая связывает компактное вещество кости с окружающими тканями
- **2. трофическая** содержит кровеносные сосуды, которые прободают кость, разветвляясь в ней по *фолькмановым каналам*, и питают ее.
- 3. регенераторная в камбиальном слое есть <u>остеогенные</u> <u>клетки</u> /трансформируются в <u>остеобласты</u> и синтезируют костное вещество/ и <u>остеокласты</u> /разрушают костную ткань/
- 4. рост кости в толщину аппозиционный рост /за счет остеобластов/

СТРОЕНИЕ ОСТЕОБЛАСТА: 1 — митохондрий; 2 — ядро; 3 — сеть эндоплазматического ретикула; 4 — аппарат Гольджи; 5 — полирибосомы

клетки костной ткани:

остеобласты:

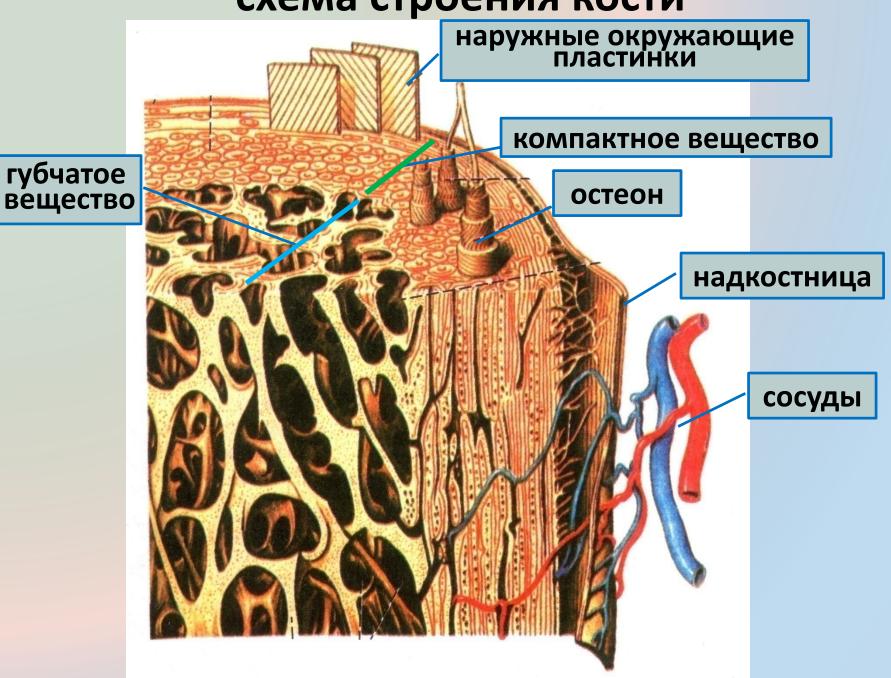
 синтезируют и секретируют компоненты межклеточного вещества и участвуют в его минерализации

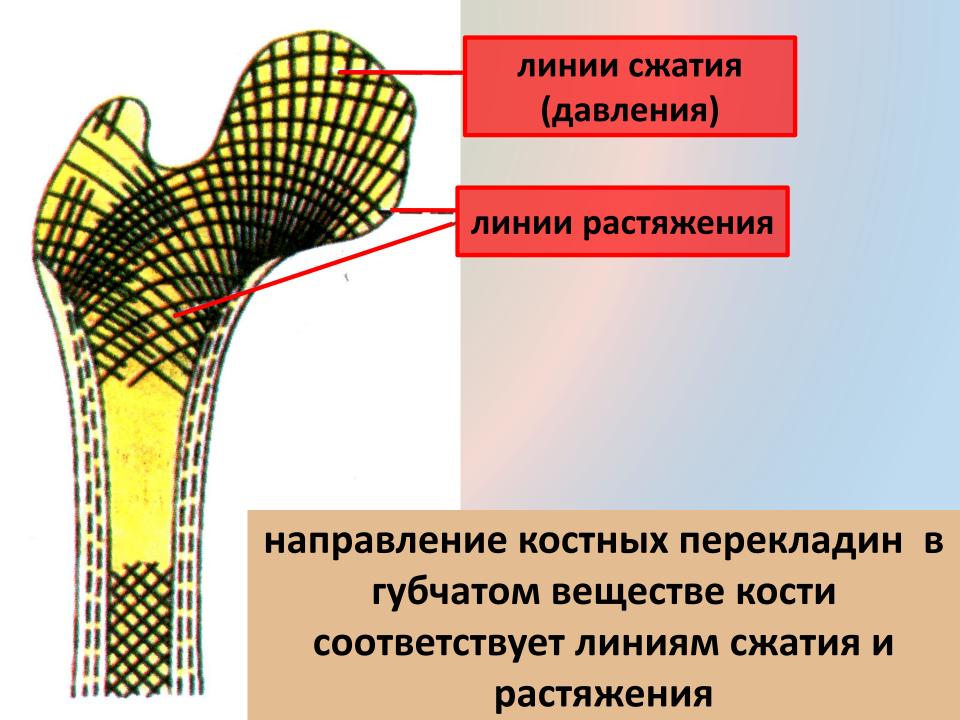
остеоциты:

- продуцируют межклеточное вещество (1 тип клеток),
- резорбция (рассасывание)
 межклеточного вещества (2 тип клеток);
- имеют отростки, которые сокращаясь, перемещают тканевую жидкость

остеокласты:

резорбируют (рассасывают) костную ткань


основное вещество кости

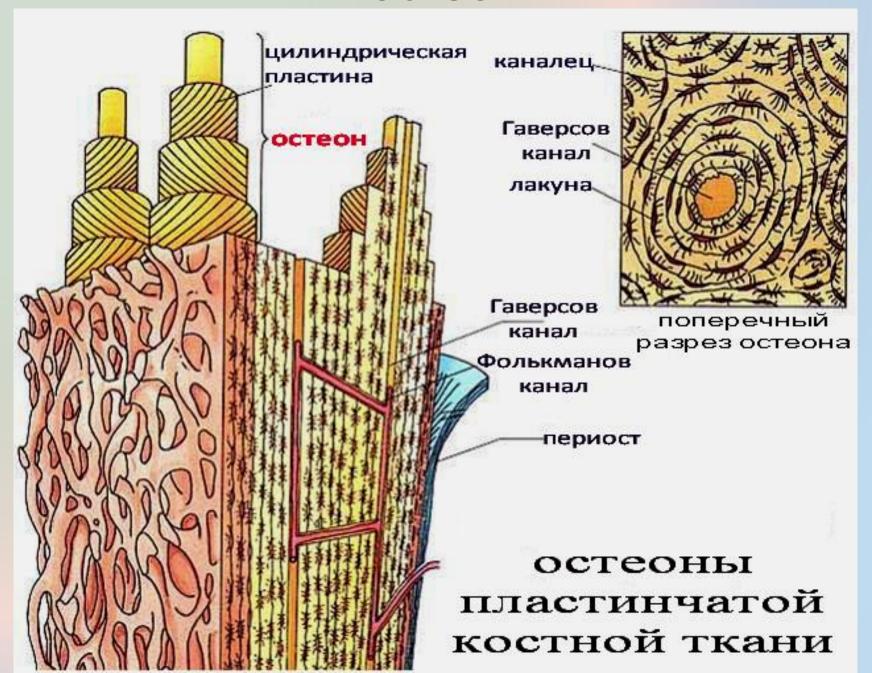

(пластинчатая костная ткань):

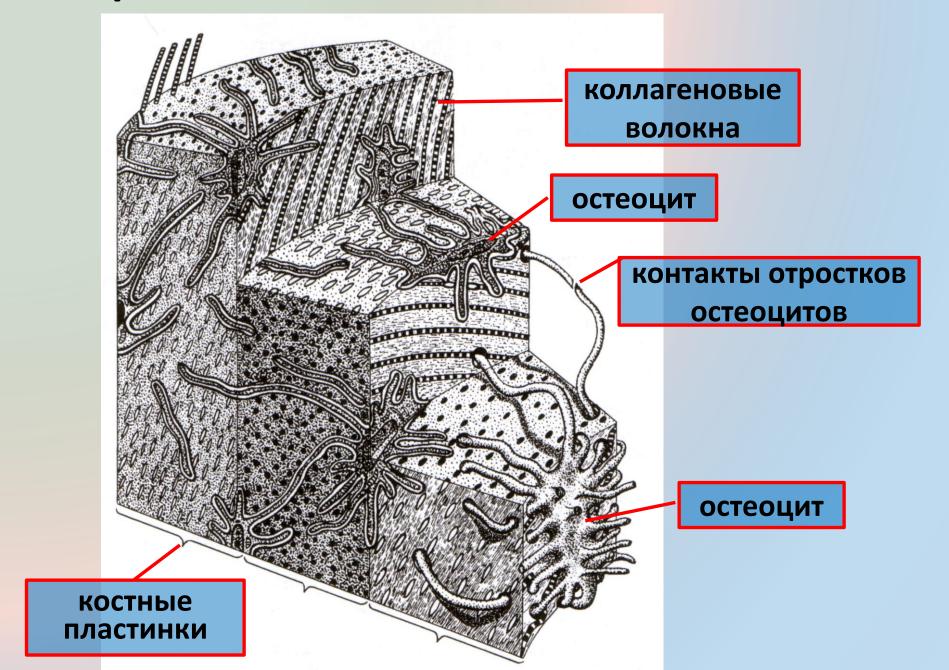
1) компактное костное вещество (substantia compacta) – прилегает к надкостнице изнутри состоит:

- а) <u>слой наружных окружающих пластин</u> (лежат параллельно друг другу, охватывая диафиз по окружности), между пластинами остеоциты
- b) <u>остеонный слой</u> из остеонов и вставочных пластин (остатки остеонов)
- с) слой внутренних окружающих пластин
- 2) губчатое костное вещество (substantia spongiosa) из перекладин, образующих ячейки, в которых расположен костный мозг
- ✓ эндост (внутренняя надкостница) выстилает кость изнутри

схема строения кости

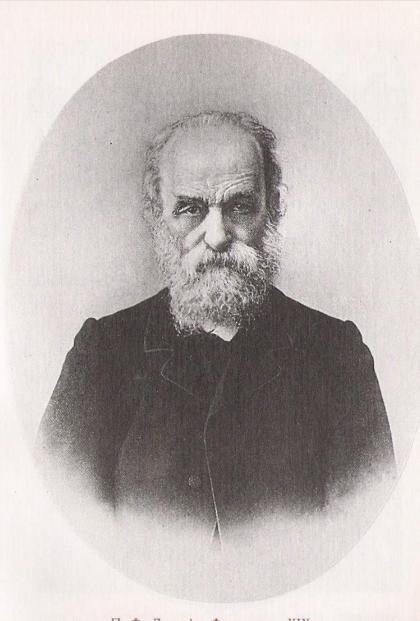
Эйфелева башня




Остеон

- **структурная единица пластинчатой костной ткани** (длина 2см, диаметр 0,3-0,4мм),
- образован 4-20 цилиндрическими пластинками (трубками), вставленными одна в другую
- волокна в соседних пластинках одного остеона направлены противоположно под углом 45град. / прочность на изгиб и скручивание/
- между пластинками в лакунах (полостях) замурованы <u>остеоциты</u> /контактируют между собой подвижными отростками, лежащими в канальцах/
- гаверсов (сосудистый) канал в центре остеона

остеон


строение пластинчатой костной ткани

транспортно-эвакуаторная дренажная система кости образована:

- 1. лакунами /лежат остеоциты/
- 2. канальцами / лежат отростки остеоцитов/
- 3. гаверсовыми каналами / вдоль остеона/
- 4. фолькмановыми каналами / поперек остеона/
- ✓ обеспечивает транспорт питательных веществ, метаболитов, газов, минеральных веществ в кости <u>за</u> счет движения отростков остеоцитов
- ✓ связывает все слои кости

Лесгафт Петр Францевич

П. Ф. Лесгафт. Фото конца XIX в.

Рождение: 20 сентября 1837

Смерть: 28 ноября 1909 (72 года)

Образование: медико-хирургическая

академия

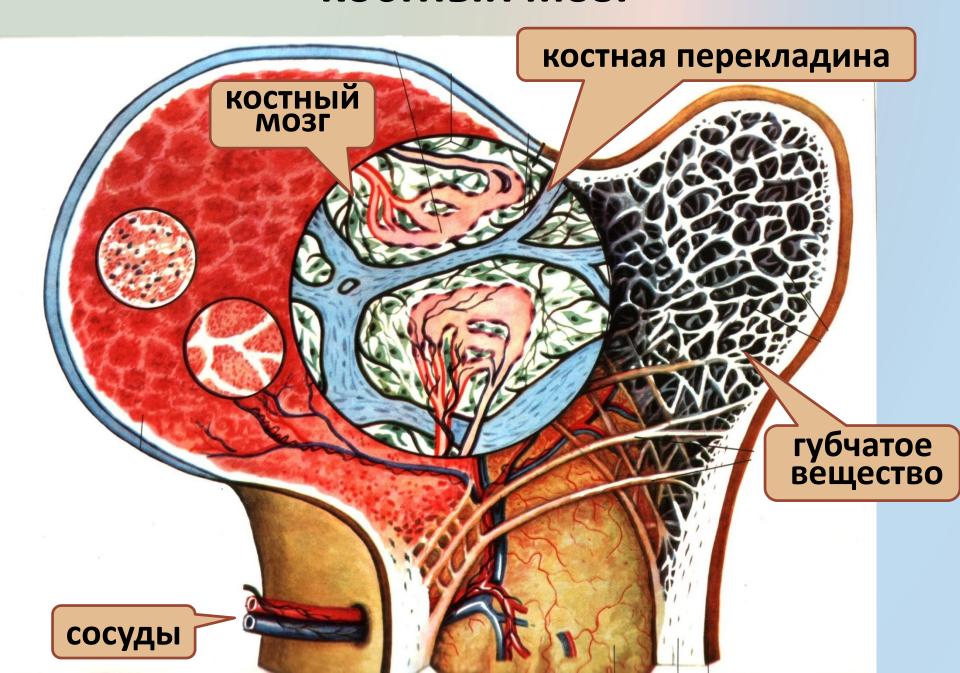
<mark>Учёная степень: докт</mark>ор медицины

Профессия: биолог, анатом, антрополог,

врач, педагог

«Все, что упражняется, развивается и совершенствуется, что не упражняется— распадается»

«Необходимо, чтобы умственное и физическое воспитание шли параллельно, иначе мы нарушим правильный ход развития в тех органах, которые останутся без упражнения»

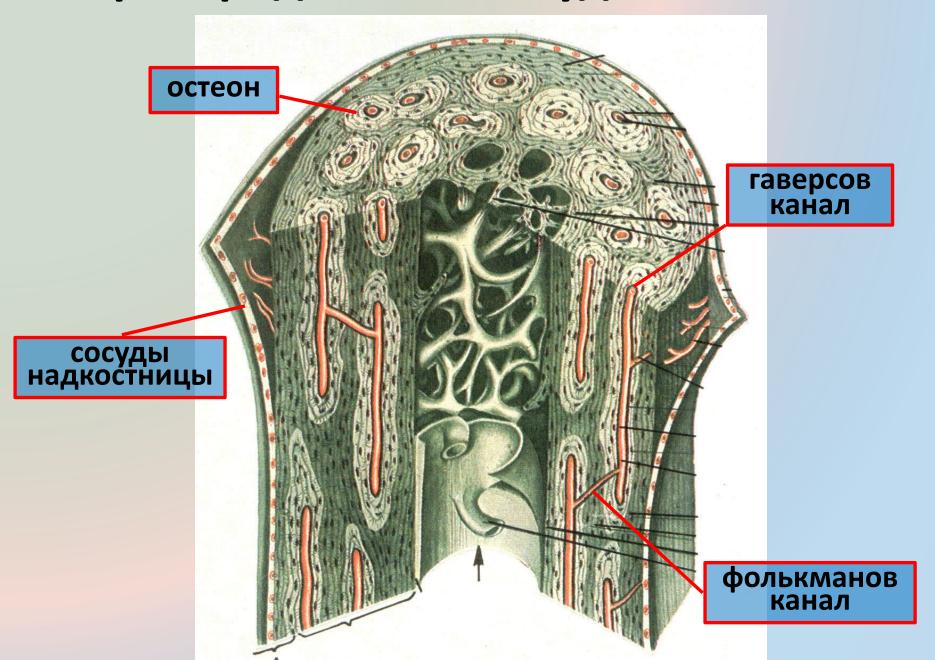

общие принципы организации костей (по Лесгафту):

- 1. губчатое вещество образуется в местах наибольшего сжатия или натяжения
- 2. развитие костной ткани зависит от деятельности связанных с данной костью мышц
- 3. трубчатое и арочное строение обеспечивает наибольшую прочность при минимальной затрате костного материала
- 4. внешняя форма костей зависит от давления на них окружающих тканей и органов (мышц) и меняется при уменьшении и увеличении давления
- перестройка формы костей происходит под влиянием внешних (для костей) сил

костный мозг (medulla osseum)

- центральный орган иммунной системы, орган кроветворения
- содержит стволовые иммунокомпетентные клетки и клетки крови
- лежит в костномозговом канале трубчатых костей и ячейках губчатого вещества
- с возрастом <u>красный костный мозг</u> подвергается жировой дистрофии и переходит в <u>желтый костный мозг</u>.
- у молодняка соотношение красного костного мозга к желтому 9:1, у взрослых 1:1
- масса костного мозга 45% от массы костей

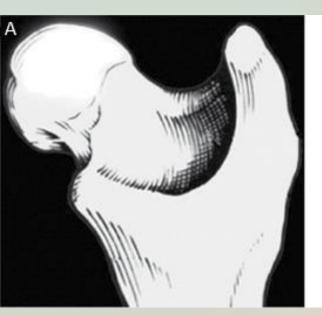
костный мозг

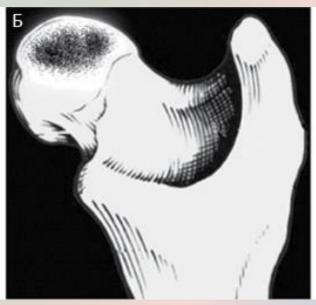

суставной хрящ (cartilago articularis)

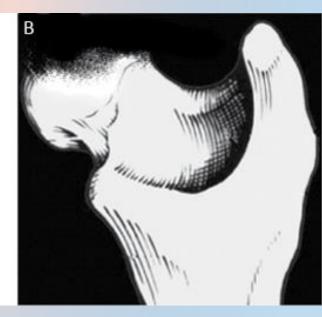
- покрывает суставные поверхности костей
- прочно срастается с подлежащей костью
- гладкая поверхность обеспечивает скольжение костей в суставе
- упругость хряща амортизирует удары при движении

сосуды костей

- проникают в кость из окружающих мягких тканей и образуют 2 сосудистые сети:
- 1. поверхностную в надкостнице
- 2. глубокую в костном мозге
- ветвятся по фолькмановым каналам и сообщаются с гаверсовыми каналами
- сосудистые отверстия сконцентрированы вблизи эпифизов (25-30/1см²)
- крупное сосудистое отверстие на диафизе для прохождения сосудов в полость кости

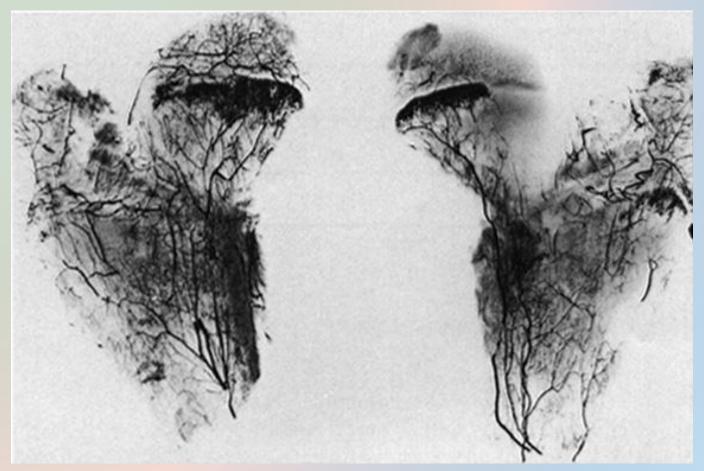

распределение сосудов в кости




(асептический некроз головки бедра)

- возникает из-за окклюзии (закрытия) кровеносных сосудов, идущих к головке через шейку бедра, из-за чего нарушается питание головки и возникает её некроз.
- позже происходит вторичное врастание сосудов в некротический очаг, и головка бедра рассасывается фрагментарно или полностью, что вызывает тяжёлое поражение сустава
- это наследуемое заболевание, встречающееся в основном у мелких и миниатюрных пород до 12 кг, таких как чихуахуа, йоркширский терьер, тойтерьер, левретка, мопс, джек рассел терьер и др.

(асептический некроз головки бедра)


Снижение рентгенологической плотности при болезни Легга-Пертеса.

А — головка бедра в норме;

Б — начальная стадия: разрежение плотности в центральной части головки бедра;

В — поздняя стадия: резорбция головки бедра.

(асептический некроз головки бедра)

Сосудистый рисунок проксимальной части бедра: слева— нормальная васкуляризация; справа— окклюзия сосудов головки бедра при болезни Легга-Пертеса.

(асептический некроз головки бедра)

Болезнь Легга-Пертеса левого тазобедренного сустава.

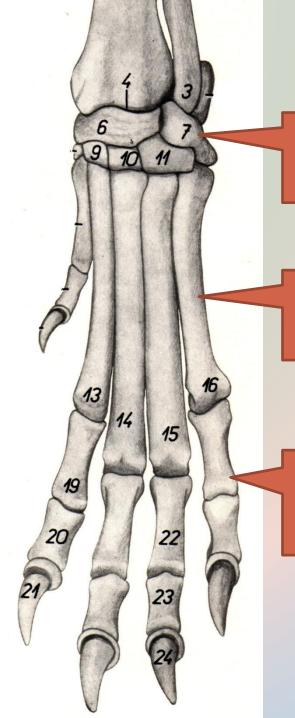
Резорбция головки бедра при болезни Легга-Пертеса.

нервы костей

- проникают в кость, ответвляясь от нервов надкостницы
- в надкостнице множество <u>чувствительных</u> нервных окончаний /травмы надкостницы болезненны/ и <u>симпатических</u> нервных волокон /иннервируют сосуды/

Вопрос 3 Классификация костей

По морфофункциональным признакам:

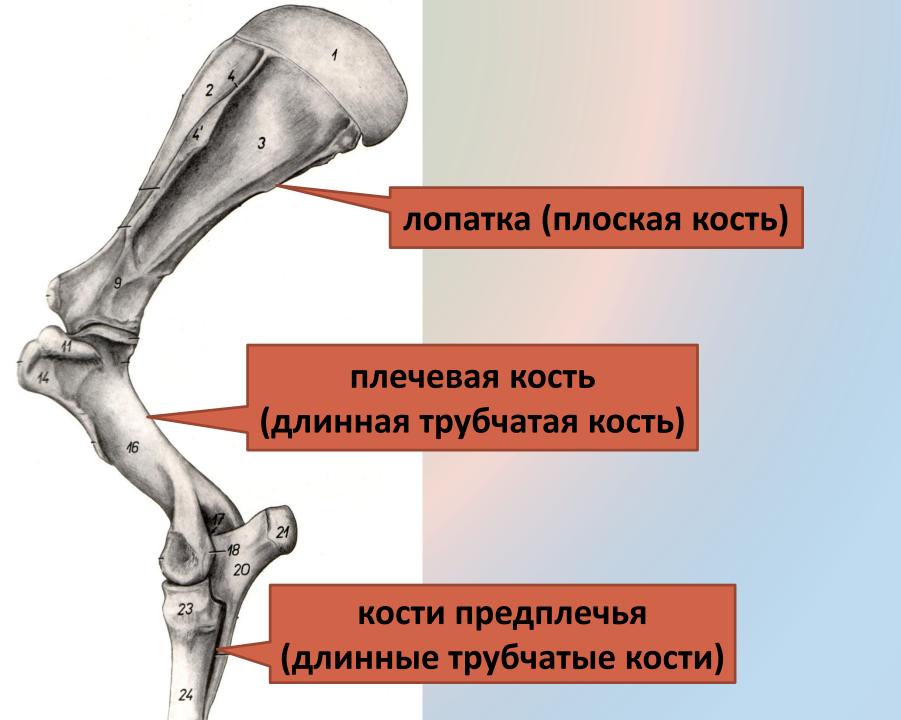

- 1. Длинные /длина больше ширины и толщины/:
- а) дугообразные ребра
- b) трубчатые бедро, плечо, голень, предплечье
- ✓ диафиз из компактного вещества, внутри костномозговая полость
- У ЭПИФИЗЫ из губчатого вещества, снаружи покрыты тонкой пластиной компактного вещества

трубчатые кости бывают:

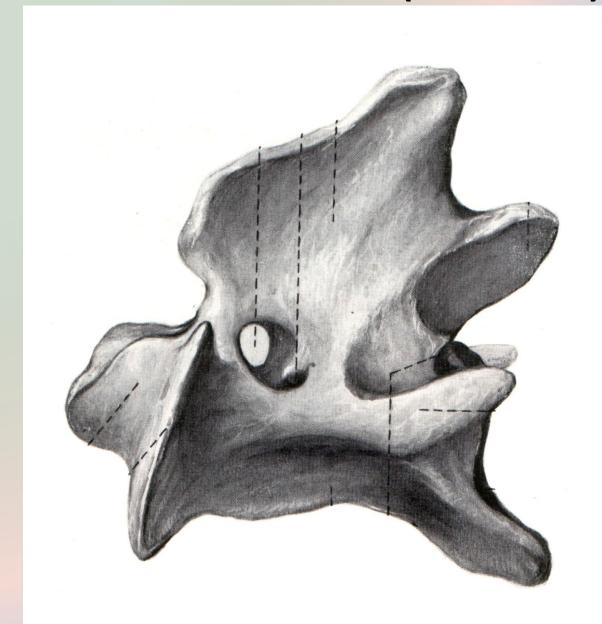
- 1)<u>длинные</u> (плечевая, бедренная)
- 2) короткие (фаланги пальцев, кости пясти, плюсны)

По морфофункциональным признакам:

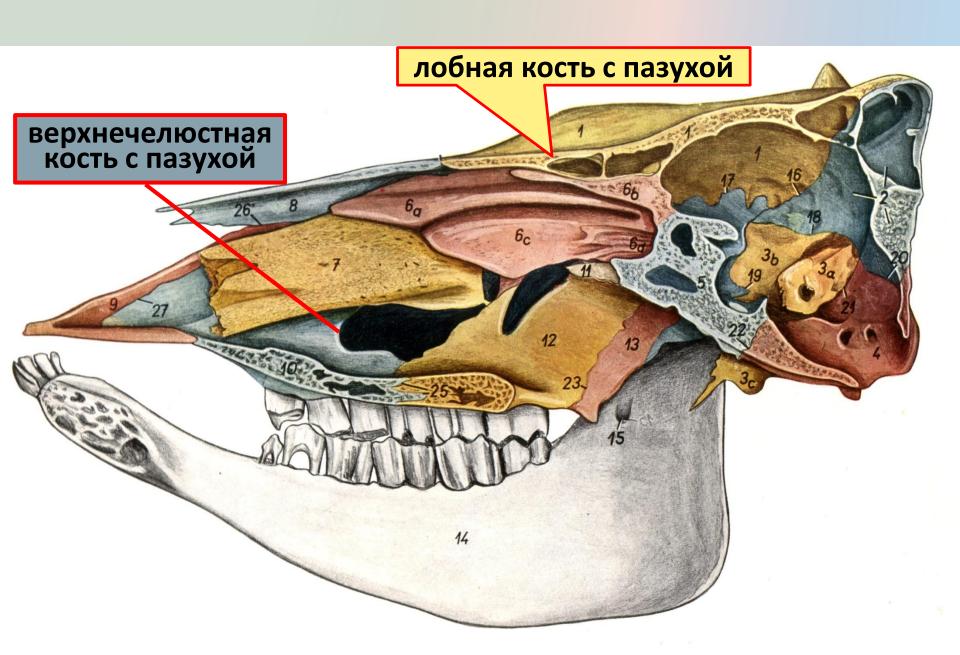
- 2. Короткие (губчатые) состоят из губчатого вещества, покрытого тонким слоем компактного вещества (как эпифизы)
- ✓ имеют форму неправильного куба или многогранника
- ✓ расположены в местах, где большая нагрузка сочетается с большой подвижностью (запястье, заплюсна) и сравнимы с шарикоподшипниками


кости запястья (короткие /губчатые/ кости)

кости пясти (короткие трубчатые кости)


кости фаланг пальцев (короткие трубчатые кости)

По морфофункциональным признакам:


- 3. Плоские участвуют в образовании полостей, поясов конечностей, выполняют функцию защиты (кости крыши черепа, тазовые кости, лопатка). К их обширным поверхностям крепятся мышцы
- **4. Смешанные** имеют сложную форму, состоят из нескольких частей, имеющих различное строение (позвонки)
- **5. Воздухоносные** имеют полости (пазухи), выстланные слизистой оболочкой и заполненные воздухом (лобная, клиновидная, решетчатая, верхнечелюстная кости)

смешанная кость (позвонок)

плоские и воздухоносные кости черепа

По происхождению:

- 1. Первичные из соединительной ткани сразу образуется кость (покровные кости черепа: теменная, верхнечелюстная, лобная и др.)
- **2. Вторичные** из соединительной ткани сначала формируется хрящевая модель кости, а затем кость (кости туловища и конечностей)

По топографии:

- 1. Кости осевого скелета:
- а) кости черепа
- b) кости шеи, туловища, хвоста
- 2. Кости периферического скелета:
- а) кости грудной конечности
- b) кости тазовой конечности

Вопрос 4

Химический состав и физические свойства костей

химический состав свежей кости

50

15

неорганические соединения %

85

9

фосфорнокислый кальций

углекислый кальций

химические соединения %

вода

жир

органические соед. (оссеи	н) 12,5	фтористый кальций	3	
оссеина в сухой кости	30-40	фосфорнокислый магний	1,5	
неорганические соед.	21,8	хлористый натрий и калий	0,5	
неорг. соед. в сухой кости	60-70	другие соединения	1	
всего	100%	всего	100%	

коллагена, гликопротеида и мукополисахарида

межклеточная кристаллическая решетка кости представлена кристаллами гидроксиаппатита, который образован солями кальция и фосфора

возрастные особенности химического состава высушенных и обезжиренных костей, %

VIARALALIO CIVIA O CO O ELALIO LILAGIO	возраст животного		
химические соединения	молодые	зрелые	старые
органические соединения	50	30	13
неорганические соединения	50	70	87
отношение органических веществ к неорганическим	1:1	1:2,3	1:6,7

- у **молодых** животных кости мягкие и эластичные (за счет органических веществ)
- у **старых** хрупкие (сильная минерализация)

и пористые (остеопороз)

физические свойства кости

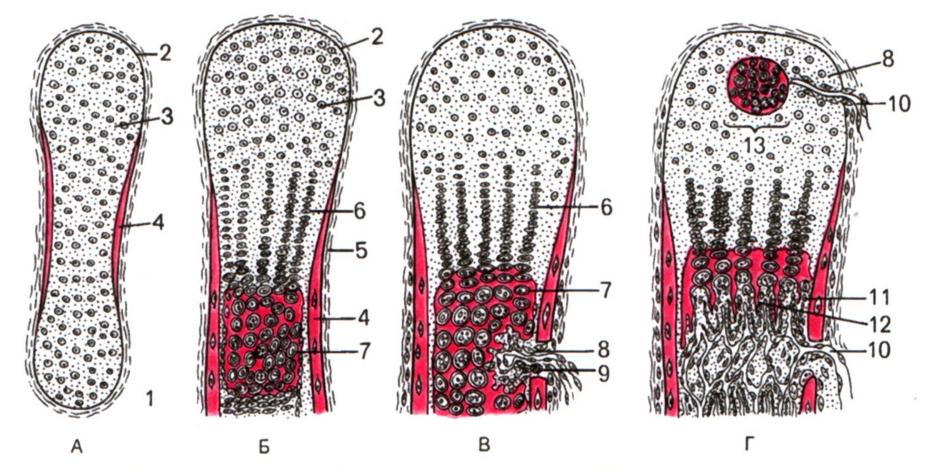
элементы	сопротивляемость, кг/мм²			сопротивляемость, кг/мм²	
	на растяжение	на	материалы	на растяжение	на
	•			•	
КОСТЬ	9-12	12-16	чугун	13	75
костный хрящ	1,5	2,7	свинец	1,3	5,2
реберный хрящ	0,17	1,5	дуб	8,1	5,3

Вопрос 5

Развитие и рост костей, факторы, влияющие на них

развитие первичных костей 3 стадии (прямой остеогистогенез):

- 1. <u>образование скелетогенного островка</u> размножение мезенхимных клеток и разрастание сосудов на месте будущей кости
- 2. дифференцировка мезенхимных клеток в остеобласты и продукция ими органической матрицы костной ткани (остеоида). Остеобласты постепенно «замуровываются» в межклеточном веществе и превращаются в остеоциты
- 3. кальцификация межклеточного вещества. Под действием ферментов остеобластов (щелочная фосфатаза и др.) образуются кристаллы гидроксиаппатита


развитие вторичных костей

непрямой остеогистогенез - 4 стадии:

- **А.** образование хрящевой модели кости из мезенхимы (на 2-м мес. эмбриогенеза). Она состоит из эмбрионального гиалинового хряща покрытого надхрящницей
- **Б. перихондральное окостенение:** в надхрящнице разрастаются кровеносные сосуды и появляются остеобласты, окружающие манжеткой среднюю часть диафиза (первичный центр окостенения). Надхрящница перестраивается в надкостницу

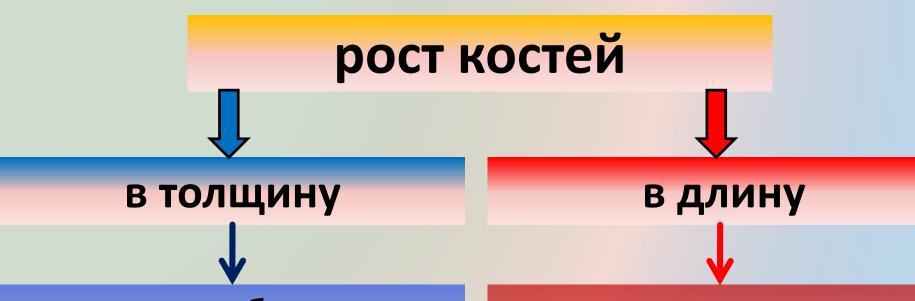
развитие вторичных костей

- В. эндохондральное окостенение: костная манжетка нарушает питание хряща, он подвергается дистрофии и разрушается остеокластами. На этом месте разрастаются сосуды, появляются остеобласты и образуется костная ткань (вторичный центр окостенения)
- **Г. появление центров окостенения в эпифизах** (по тому же сценарию)
- ✓ хрящевая ткань сохраняется в области между диафизом и эпифизами метафизарный хрящ зона роста костей в длину

Непрямой (хрящевой) остеогенез (схема). Образование хрящевой модели кости и перихондральной костной манжетки (по Ю. И. Афанасьеву).

А, Б, В, Г — стадии остеогенеза; 1 — первичная хрящевая модель трубчатой кости; 2 — над-хрящница; 3 — хрящевая ткань; 4 — перихондральная костная манжетка; 5 — надкостница; 6 — колонки хрящевых клеток; 7 — зона пузырчатых клеток; 8 — врастающая в хрящ мезенхима с дифференцирующимися остеокластами (9) и кровеносными капиллярами (10); 11 — остеобласты; 12 — эндохондрально образованная костная ткань; 13 — точка окостенения в эпифизе.

рост скелета в эмбриогенезе



рост скелета в эмбриогенезе

- стимулируется <u>движением эмбриона</u> и быстрым <u>развитием костного мозга</u> как основного органа кроветворения
- во второй половине эмбриогенеза рост массы костей намного больше прироста массы тела
- вначале интенсивнее растет осевой скелет, затем периферический. После рождения рост осевого скелета обгоняет рост периферического
- окостенение скелета проходит поэтапно у крупного рогатого скота:
 - 1 этап до 70дн.(ребра, грудина, позвоночник, лопатки, таз, диафизы костей конечностей)
- **2 этап** 70 165дн. (ослабление развития окостенений)
- **3 этап** от 165 до 275дн. (окостенение эпифизов, апофезов, запястья и заплюсны)

зоны окостенения скелета эмбриона косули

за счет камбиального слоя надкостницы – аппозиционный рост

(зависит от физических нагрузок)

за счет зоны метафизарного хряща (до полового созревания)

✓ перестройка кости длится в течение всей жизни и основана на пьезоэлектрическом эффекте в костной ткани

Пьезоэлектрический эффект кости

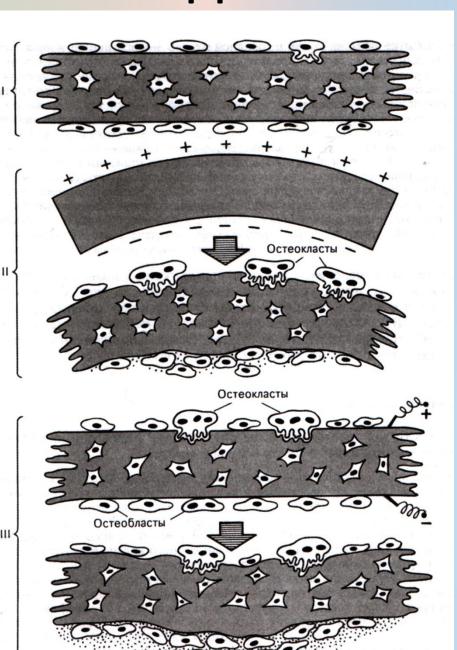
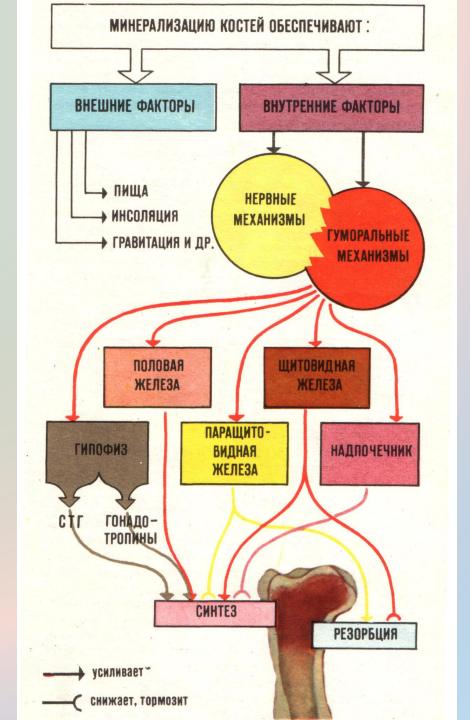

- 1. растяжение кости вызывает в костных пластинках положительный электрический заряд активизируются остеокласты, они резорбируют костную ткань и через определенное время активизируют остеобласты
- 2. **СЖАТИЕ КОСТИ** вызывает отрицательный заряд активизируются остеобласты, образующие костную ткань
- 3. отсутствие физической нагрузки (нулевой потенциал) <u>стимулирует остеокласты</u> и выведение солей из кости

схема пьезоэлектрического эффекта кости

строение костной перекладины


активация остеокластов и остеобластов при растяжении и сжатии перекладины

разности потенциалов

сроки зрелости

вид	половая зрелость	физиологическая зрелость	зрелость скелета
лошадь	1,5	3 года	4,5-5 лет
круп. рог. скот	8-12	1,5-2 года	4-4,5 года
мелк. рог. скот	7-8	1-1,5 года	3-3,5 года
свинья	5-8	9-12 mec.	3-3,5 года
собака, кошка	4-8	10-12 mec.	1,5-2 года
кролик	4-5	6-8 mec.	1 год
человек	12-15 (жен) 13-16 (муж)	16-20 (жен) 17-21 (муж)	17-21 (жен) 19-23 (муж)

внешние факторы:

1. кормление

- недостаток вит. С уменьшается образование коллагеновых волокон, угнетение остеобластов останавливается рост кости из-за торможения образования органической матрицы.
- недостаток вит. А тормозится синтез мукополисахаридов, кости утолщаются, нарушается минерализация;
 - избыток усиливается разрушение остеокластами метафизарных хрящей, замедляется удлинение костей, уменьшается прочность
- недостаток вит. Д нарушается всасывание и использование кальция и фосфора, недостаточная минерализация костей ведет к рахиту и остеомаляции (размягчению)

рахит у щенка английского бульдога

внешние факторы:

1. кормление

- **Стронций** способствуют обызвествлению. Стронций вытесняет из кости кальций, но сам его не замещает, что увеличивает пористость кости (остеопороз)
- Цинк регулирует процессы декальцинации
- **Марганец, кобальт** повышают минерализацию кости
- **Медь** входит в состав ферментов, активизирующих обменные процессы в кости
- Кальций и фосфор при недостатке замедляется или прекращается минерализация кости

внешние факторы:

2. физическая нагрузка

- систематическое увеличение физической нагрузки ведет увеличивает массу скелета от 10 до 50% вследствие высокой минерализации
- физические нагрузки в молодом возрасте вызывают интенсивный аппозиционный рост кости (в толщину)
- отсутствие физических нагрузок ведет к резорбции (рассасыванию) костной ткани и увеличению пористости кости

внутренние факторы:

1. гормоны:

- паращитовидных желез паратгормон стимулирует остеокласты — резорбция кости — повышение уровня кальция в крови, подавляет остеобласты
- **щитовидной железы** *тореокальцитонин* тормозит остеокласты, стимулирует остеобласты, усиливает остеогенез
- **щитовидной железы тироксин** у молодых ускоряет образование и созревание костной ткани, у старых резорбция кости
- гипофиза *гормон роста = соматотропин* стимулирует рост кости, подавляя ее минерализацию
- половые стимулируют остеобласты, подавляют остеокласты, способствуют росту кости в длину. Резкое повышение их содержания ведет к минерализации метафизов и низкорослости (раннее половое созревание). При гипогонадизме гигантизм
- коры надпочечников кортизол снижает синтез коллагена, способствует развитию остеопороза
- 2. наследственность, состояние систем организма

Остеопороз (видео)

